亚洲美女尤物影院,美女高潮在线观看,最新国产精品拍自在线播放,国产在视频线精品视频www666

名課堂 - 企業(yè)管理培訓(xùn)網(wǎng)聯(lián)系方式

聯(lián)系電話:400-8228-121

值班手機(jī):18971071887

Email:Service@mingketang.com

企業(yè)管理培訓(xùn)分類導(dǎo)航

企業(yè)管理培訓(xùn)公開(kāi)課計(jì)劃

企業(yè)培訓(xùn)公開(kāi)課日歷

研發(fā)管理培訓(xùn)公開(kāi)課

研發(fā)管理培訓(xùn)內(nèi)訓(xùn)課程

熱門企業(yè)管理培訓(xùn)關(guān)鍵字

您所在的位置:名課堂>>公開(kāi)課>>研發(fā)管理培訓(xùn)公開(kāi)課

Python大數(shù)據(jù)核心技術(shù)實(shí)戰(zhàn)

【課程編號(hào)】:MKT043948

【課程名稱】:

Python大數(shù)據(jù)核心技術(shù)實(shí)戰(zhàn)

【課件下載】:點(diǎn)擊下載課程綱要Word版

【所屬類別】:研發(fā)管理培訓(xùn)

【時(shí)間安排】:2021年12月25日 到 2021年12月28日7800元/人

2021年01月13日 到 2021年01月14日7800元/人

【授課城市】:杭州

【課程說(shuō)明】:如有需求,我們可以提供Python大數(shù)據(jù)核心技術(shù)實(shí)戰(zhàn)相關(guān)內(nèi)訓(xùn)

【其它城市安排】:珠海 蘇州 成都 北京 深圳 上海 太原 天津 長(zhǎng)沙 中山 福州 重慶 惠州 廈門 廣州 大連 東莞 長(zhǎng)春 青島

【課程關(guān)鍵字】:杭州Python培訓(xùn)

我要報(bào)名

咨詢電話:
手  機(jī): 郵箱:
課程目標(biāo)

1.每個(gè)算法模塊按照“原理講解→分析數(shù)據(jù)→自己動(dòng)手實(shí)現(xiàn)→特征與調(diào)參”的順序。

2.“Python數(shù)據(jù)清洗和特征提取”,提升學(xué)習(xí)深度、降低學(xué)習(xí)坡度。

3.增加網(wǎng)絡(luò)爬蟲(chóng)的原理和編寫(xiě),從獲取數(shù)據(jù)開(kāi)始,重視將實(shí)踐問(wèn)題轉(zhuǎn)換成實(shí)際模型的能力,分享工作中的實(shí)際案例或Kaggle案例:廣告銷量分析、環(huán)境數(shù)據(jù)異常檢測(cè)和分析、數(shù)字圖像手寫(xiě)體識(shí)別、Titanic乘客存活率預(yù)測(cè)、用戶-電影推薦、真實(shí)新聞組數(shù)據(jù)主題分析、中文分詞、股票數(shù)據(jù)特征分析等。

4.強(qiáng)化矩陣運(yùn)算、概率論、數(shù)理統(tǒng)計(jì)的知識(shí)運(yùn)用,掌握機(jī)器學(xué)習(xí)根本。

5.闡述機(jī)器學(xué)習(xí)原理,提供配套源碼和數(shù)據(jù)。

6.以直觀解釋,增強(qiáng)感性理解。

7.對(duì)比不同的特征選擇帶來(lái)的預(yù)測(cè)效果差異。

8.重視項(xiàng)目實(shí)踐,重視落地。思考不同算法之間的區(qū)別和聯(lián)系,提高在實(shí)際工作中選擇算法的能力。

9.涉及和講解的部分Python庫(kù)有:Numpy、Scipy、matplotlib、Pandas、scikit-learn、XGBoost、libSVM、LDA、Gensim、NLTK、HMMLearn。

課程目標(biāo)

本課程特點(diǎn)是從數(shù)學(xué)層面推導(dǎo)最經(jīng)典的機(jī)器學(xué)習(xí)算法,以及每種算法的示例和代碼實(shí)現(xiàn)(Python)、如何做算法的參數(shù)調(diào)試、以實(shí)際應(yīng)用案例分析各種算法的選擇等。

培訓(xùn)對(duì)象

大數(shù)據(jù)分析應(yīng)用開(kāi)發(fā)工程師、大數(shù)據(jù)分析項(xiàng)目的規(guī)劃咨詢管理人員、大數(shù)據(jù)分析項(xiàng)目的IT項(xiàng)目高管人員、大數(shù)據(jù)分析與挖掘處理算法應(yīng)用工程師、大數(shù)據(jù)分析集群運(yùn)維工程師、大數(shù)據(jù)分析項(xiàng)目的售前和售后技術(shù)支持服務(wù)人員

課程大綱

模塊一 機(jī)器學(xué)習(xí)的數(shù)學(xué)基礎(chǔ)1 - 數(shù)學(xué)分析

1. 機(jī)器學(xué)習(xí)的一般方法和橫向比較

2. 數(shù)學(xué)是有用的:以SVD為例

3. 機(jī)器學(xué)習(xí)的角度看數(shù)學(xué)

4. 復(fù)習(xí)數(shù)學(xué)分析

5. 直觀解釋常數(shù)e

6. 導(dǎo)數(shù)/梯度

7. 隨機(jī)梯度下降

8. Taylor展式的落地應(yīng)用

9. gini系數(shù)

10. 凸函數(shù)

11. Jensen不等式

12. 組合數(shù)與信息熵的關(guān)系

模塊二 機(jī)器學(xué)習(xí)的數(shù)學(xué)基礎(chǔ)2 - 概率論與貝葉斯先驗(yàn)

1. 概率論基礎(chǔ)

2. 古典概型

3. 貝葉斯公式

4. 先驗(yàn)分布/后驗(yàn)分布/共軛分布

5. 常見(jiàn)概率分布

6. 泊松分布和指數(shù)分布的物理意義

7. 協(xié)方差(矩陣)和相關(guān)系數(shù)

8. 獨(dú)立和不相關(guān)

9. 大數(shù)定律和中心極限定理的實(shí)踐意義

10. 深刻理解最大似然估計(jì)MLE和最大后驗(yàn)估計(jì)MAP

11. 過(guò)擬合的數(shù)學(xué)原理與解決方案

模塊三 機(jī)器學(xué)習(xí)的數(shù)學(xué)基礎(chǔ)3 - 矩陣和線性代數(shù)

1. 線性代數(shù)在數(shù)學(xué)科學(xué)中的地位

2. 馬爾科夫模型

3. 矩陣乘法的直觀表達(dá)

4. 狀態(tài)轉(zhuǎn)移矩陣

5. 矩陣和向量組

6. 特征向量的思考和實(shí)踐計(jì)算

7. QR分解

8. 對(duì)稱陣、正交陣、正定陣

9. 數(shù)據(jù)白化及其應(yīng)用

10. 向量對(duì)向量求導(dǎo)

11. 標(biāo)量對(duì)向量求導(dǎo)

12. 標(biāo)量對(duì)矩陣求導(dǎo)工作機(jī)制

模塊四 Python基礎(chǔ)1 - Python及其數(shù)學(xué)庫(kù)

1. 解釋器Python2.7與IDE:Anaconda/Pycharm

2. Python基礎(chǔ):列表/元組/字典/類/文件

3. Taylor展式的代碼實(shí)現(xiàn)

4. numpy/scipy/matplotlib/panda的介紹和典型使用

5. 多元高斯分布

6. 泊松分布、冪律分布

7. 典型圖像處理

8. 蝴蝶效應(yīng)

9. 分形與可視化

模塊五 Python基礎(chǔ)2 - 機(jī)器學(xué)習(xí)庫(kù)

1. scikit-learn的介紹和典型使用

2. 損失函數(shù)的繪制

3. 多種數(shù)學(xué)曲線

4. 多項(xiàng)式擬合

5. 快速傅里葉變換FFT

6. 奇異值分解SVD

7. Soble/Prewitt/Laplacian算子與卷積網(wǎng)絡(luò)

8. 卷積與(指數(shù))移動(dòng)平均線

9. 股票數(shù)據(jù)分析

模塊六 Python基礎(chǔ)3 - 數(shù)據(jù)清洗和特征選擇

1. 實(shí)際生產(chǎn)問(wèn)題中算法和特征的關(guān)系

2. 股票數(shù)據(jù)的特征提取和應(yīng)用

3. 一致性檢驗(yàn)

4. 缺失數(shù)據(jù)的處理

5. 環(huán)境數(shù)據(jù)異常檢測(cè)和分析

6. 模糊數(shù)據(jù)查詢和數(shù)據(jù)校正方法、算法、應(yīng)用

7. 樸素貝葉斯用于鳶尾花數(shù)據(jù)

8. GaussianNB/MultinomialNB/BernoulliNB

9. 樸素貝葉斯用于18000+篇/Sogou新聞文本的分類

模塊七 回歸

1. 線性回歸

2. Logistic/Softmax回歸

3. 廣義線性回歸

4. L1/L2正則化

5. Ridge與LASSO

6. Elastic Net

7. 梯度下降算法:BGD與SGD

8. 特征選擇與過(guò)擬合

模塊八 Logistic回歸

1. Sigmoid函數(shù)的直觀解釋

2. Softmax回歸的概念源頭

3. Logistic/Softmax回歸

4. 最大熵模型

5. K-L散度

6. 損失函數(shù)

7. Softmax回歸的實(shí)現(xiàn)與調(diào)參

模塊九 回歸實(shí)踐

1. 機(jī)器學(xué)習(xí)sklearn庫(kù)介紹

2. 線性回歸代碼實(shí)現(xiàn)和調(diào)參

3. Softmax回歸代碼實(shí)現(xiàn)和調(diào)參

4. Ridge回歸/LASSO/Elastic Net

5. Logistic/Softmax回歸

6. 廣告投入與銷售額回歸分析

7. 鳶尾花數(shù)據(jù)集的分類

8. 交叉驗(yàn)證

9. 數(shù)據(jù)可視化

模塊十 決策樹(shù)和隨機(jī)森林

1. 熵、聯(lián)合熵、條件熵、KL散度、互信息

2. 最大似然估計(jì)與最大熵模型

3. ID3、C4.5、CART詳解

4. 決策樹(shù)的正則化

5. 預(yù)剪枝和后剪枝

6. Bagging

7. 隨機(jī)森林

8. 不平衡數(shù)據(jù)集的處理

9. 利用隨機(jī)森林做特征選擇

10. 使用隨機(jī)森林計(jì)算樣本相似度

11. 數(shù)據(jù)異常值檢測(cè)

模塊十一 隨機(jī)森林實(shí)踐

1. 隨機(jī)森林與特征選擇

2. 決策樹(shù)應(yīng)用于回歸

3. 多標(biāo)記的決策樹(shù)回歸

4. 決策樹(shù)和隨機(jī)森林的可視化

5. 葡萄酒數(shù)據(jù)集的決策樹(shù)/隨機(jī)森林分類

6. 波士頓房?jī)r(jià)預(yù)測(cè)

模塊十二 提升

1. 提升為什么有效

2. 梯度提升決策樹(shù)GBDT

3. XGBoost算法詳解

4. Adaboost算法

5. 加法模型與指數(shù)損失

模塊十三 提升實(shí)踐

1. Adaboost用于蘑菇數(shù)據(jù)分類

2. Adaboost與隨機(jī)森林的比較

3. XGBoost庫(kù)介紹

4. Taylor展式與學(xué)習(xí)算法

5. KAGGLE簡(jiǎn)介

6. 泰坦尼克乘客存活率估計(jì)

模塊十四 SVM

1. 線性可分支持向量機(jī)

2. 軟間隔的改進(jìn)

3. 損失函數(shù)的理解

4. 核函數(shù)的原理和選擇

5. SMO算法

6. 支持向量回歸SVR

模塊十五 SVM實(shí)踐

1. libSVM代碼庫(kù)介紹

2. 原始數(shù)據(jù)和特征提取

3. 葡萄酒數(shù)據(jù)分類

4. 數(shù)字圖像的手寫(xiě)體識(shí)別

5. SVR用于時(shí)間序列曲線預(yù)測(cè)

6. SVM、Logistic回歸、隨機(jī)森林三者的橫向比較

模塊十六 聚類(一)

1. 各種相似度度量及其相互關(guān)系

2. Jaccard相似度和準(zhǔn)確率、召回率

3. Pearson相關(guān)系數(shù)與余弦相似度

4. K-means與K-Medoids及變種

5. AP算法(Sci07)/LPA算法及其應(yīng)用

模塊十七 聚類(二)

1. 密度聚類DBSCAN/DensityPeak(Sci14)

2. DensityPeak(Sci14)

3. 譜聚類SC

4. 聚類評(píng)價(jià)AMI/ARI/Silhouette

5. LPA算法及其應(yīng)用

模塊十八 聚類實(shí)踐

1. K-Means++算法原理和實(shí)現(xiàn)

2. 向量量化VQ及圖像近似

3. 并查集的實(shí)踐應(yīng)用

4. 密度聚類的代碼實(shí)現(xiàn)

5. 譜聚類用于圖片分割

模塊十九 EM算法

1. 最大似然估計(jì)

2. Jensen不等式

3. 樸素理解EM算法

4. 精確推導(dǎo)EM算法

5. EM算法的深入理解

6. 混合高斯分布

7. 主題模型pLSA

模塊二十 EM算法實(shí)踐

1. 多元高斯分布的EM實(shí)現(xiàn)

2. 分類結(jié)果的數(shù)據(jù)可視化

3. EM與聚類的比較

4. Dirichlet過(guò)程EM

5. 三維及等高線等圖件的繪制

6. 主題模型pLSA與EM算法

模塊二十一 主題模型LDA

1. 貝葉斯學(xué)派的模型認(rèn)識(shí)

2. Beta分布與二項(xiàng)分布

3. 共軛先驗(yàn)分布

4. Dirichlet分布

5. Laplace平滑

6. Gibbs采樣詳解

模塊二十二 LDA實(shí)踐

1. 網(wǎng)絡(luò)爬蟲(chóng)的原理和代碼實(shí)現(xiàn)

2. 停止詞和高頻詞

3. 動(dòng)手自己實(shí)現(xiàn)LDA

4. LDA開(kāi)源包的使用和過(guò)程分析

5. Metropolis-Hastings算法

6. MCMC

7. LDA與word2vec的比較

8. TextRank算法與實(shí)踐

模塊二十三 隱馬爾科夫模型HMM

1. 概率計(jì)算問(wèn)題

2. 前向/后向算法

3. HMM的參數(shù)學(xué)習(xí)

4. Baum-Welch算法詳解

5. Viterbi算法詳解

6. 隱馬爾科夫模型的應(yīng)用優(yōu)劣比較

模塊二十四 HMM實(shí)踐

1. 動(dòng)手自己實(shí)現(xiàn)HMM用于中文分詞

2. 多個(gè)語(yǔ)言分詞開(kāi)源包的使用和過(guò)程分析

3. 文件數(shù)據(jù)格式UFT-8、Unicode

4. 停止詞和標(biāo)點(diǎn)符號(hào)對(duì)分詞的影響

5. 前向后向算法計(jì)算概率溢出的解決方案

6. 發(fā)現(xiàn)新詞和分詞效果分析

7. 高斯混合模型HMM

8. GMM-HMM用于股票數(shù)據(jù)特征提取

模塊二十五 課堂提問(wèn)與互動(dòng)討論

張老師

張老師:阿里大數(shù)據(jù)高級(jí)專家,國(guó)內(nèi)資深的Spark、Hadoop技術(shù)專家、虛擬化專家,對(duì)HDFS、MapReduce、HBase、Hive、Mahout、Storm、spark和openTSDB等Hadoop生態(tài)系統(tǒng)中的技術(shù)進(jìn)行了多年的深入的研究,更主要的是這些技術(shù)在大量的實(shí)際項(xiàng)目中得到廣泛的應(yīng)用,因此在Hadoop開(kāi)發(fā)和運(yùn)維方面積累了豐富的項(xiàng)目實(shí)施經(jīng)驗(yàn)。近年主要典型的項(xiàng)目有:某電信集團(tuán)網(wǎng)絡(luò)優(yōu)化、中國(guó)移動(dòng)某省移動(dòng)公司請(qǐng)賬單系統(tǒng)和某省移動(dòng)詳單實(shí)時(shí)查詢系統(tǒng)、中國(guó)銀聯(lián)大數(shù)據(jù)數(shù)據(jù)票據(jù)詳單平臺(tái)、某大型銀行大數(shù)據(jù)記錄系統(tǒng)、某大型通信運(yùn)營(yíng)商全國(guó)用戶上網(wǎng)記錄、某省交通部門違章系統(tǒng)、某區(qū)域醫(yī)療大數(shù)據(jù)應(yīng)用項(xiàng)目、互聯(lián)網(wǎng)公共數(shù)據(jù)大云(DAAS)和構(gòu)建游戲云(Web Game Daas)平臺(tái)項(xiàng)目等。

我要報(bào)名

在線報(bào)名:Python大數(shù)據(jù)核心技術(shù)實(shí)戰(zhàn)(杭州)

亚洲美女尤物影院,美女高潮在线观看,最新国产精品拍自在线播放,国产在视频线精品视频www666

成人午夜视频在线观看| 国产亚洲精久久久久久| 蜜臀av性久久久久蜜臀aⅴ四虎| 五月天久久比比资源色| 综合色天天鬼久久鬼色| 亚洲视频1区2区| 日韩女同互慰一区二区| 综合电影一区二区三区| 91精品国产乱码| 亚洲国产精品激情在线观看| 日韩电影免费在线观看网站| 精品一区在线看| 国产精品美女久久久久久久久久久| 视频一区二区三区中文字幕| 一区二区成人在线| 亚洲成人av福利| 51精品视频一区二区三区| 亚洲嫩草精品久久| 亚洲国产成人午夜在线一区| 精品一区二区在线看| 欧美成人一区二区三区片免费| 国内精品久久久久影院色| 99久久婷婷国产综合精品| 久久99精品国产麻豆婷婷洗澡| 亚洲精品免费播放| 图片区日韩欧美亚洲| 91九色最新地址| 亚洲自拍都市欧美小说| 国产精品色在线观看| 综合久久久久综合| 精品视频一区二区不卡| 亚洲六月丁香色婷婷综合久久| 日韩视频免费观看高清在线视频| 在线播放91灌醉迷j高跟美女| 国产女人18水真多18精品一级做| 26uuu国产在线精品一区二区| 在线一区二区三区做爰视频网站| 丁香婷婷综合激情五月色| 欧美精品久久久久久久久老牛影院| 国产精品久久一卡二卡| 欧美xxxxx裸体时装秀| 国产精品你懂的| 国产日韩欧美精品一区| 一区二区免费看| 免费看黄色91| 久久91精品久久久久久秒播| 久久综合成人精品亚洲另类欧美| 欧美综合亚洲图片综合区| 久久久精品欧美丰满| 欧美亚洲国产一区二区三区va| 激情综合五月婷婷| 日本高清视频一区二区| 美脚の诱脚舐め脚责91| av在线这里只有精品| 精品久久久久久久人人人人传媒| 亚洲成人免费在线| 国产毛片精品一区| 色综合久久久久综合99| 亚洲精品成人天堂一二三| 亚洲成av人影院| 亚洲综合一区二区精品导航| 三级在线观看一区二区| 五月激情综合色| www.亚洲色图| 洋洋成人永久网站入口| 日本亚洲最大的色成网站www| 亚洲已满18点击进入久久| 久久亚洲精华国产精华液| 亚洲国产一区在线观看| 亚洲欧美自拍偷拍| 伊人色综合久久天天| 国产成a人亚洲| 亚洲精品日韩专区silk| www.色精品| 欧美日韩一区二区三区免费看| 国产精品卡一卡二卡三| 欧洲精品中文字幕| 美女mm1313爽爽久久久蜜臀| 国产99久久精品| 亚洲精品在线观看视频| 国产1区2区3区精品美女| 国产一区二区三区四区五区入口| 日韩国产精品久久久久久亚洲| 日韩免费视频线观看| 成人一区二区三区| 久久超级碰视频| 精品免费日韩av| 成人免费一区二区三区视频| 免费在线欧美视频| 国产.欧美.日韩| 国产精品激情偷乱一区二区∴| 欧美一区二区三区视频在线| 色香色香欲天天天影视综合网| 精品国产电影一区二区| 欧美国产一区二区在线观看| 亚洲欧美综合另类在线卡通| 韩国v欧美v亚洲v日本v| 欧美性做爰猛烈叫床潮| 成人久久久精品乱码一区二区三区| 国产黄色精品网站| 日韩中文字幕不卡| 99热精品国产| 国产精品综合网| 中文一区一区三区高中清不卡| 麻豆一区二区三| 精品视频免费在线| 国产一区二区免费视频| 国产精品亲子乱子伦xxxx裸| 国产乱码精品一区二区三区忘忧草| 国产麻豆欧美日韩一区| 99久久综合99久久综合网站| 国产精品视频九色porn| 一区二区三区精品久久久| 国产一区二区0| 一区二区三区波多野结衣在线观看| 亚洲女人小视频在线观看| 成人一区二区三区视频在线观看| 欧美日本一道本在线视频| 精品免费国产一区二区三区四区| 国产麻豆精品久久一二三| 国产麻豆精品在线| 久久久久久久久久久99999| 精品少妇一区二区三区日产乱码| 黄色小说综合网站| 视频一区欧美精品| 一区二区三区加勒比av| 国产三级精品三级在线专区| 精品伦理精品一区| 成人福利视频在线| 国产伦精一区二区三区| ...xxx性欧美| ...中文天堂在线一区| 4hu四虎永久在线影院成人| 在线亚洲+欧美+日本专区| 老司机午夜精品99久久| 国产成人亚洲综合a∨猫咪| 欧美亚洲国产一区二区三区va| 91在线视频播放地址| 另类中文字幕网| 中文字幕人成不卡一区| 午夜精品久久一牛影视| 国产精品不卡在线观看| 欧美大片在线观看一区二区| 免费美女久久99| 在线观看日韩av先锋影音电影院| 国产精品一品二品| 欧美日本韩国一区二区三区视频| 一区二区三区四区激情| 一本在线高清不卡dvd| 久久色中文字幕| 国产欧美精品一区二区三区四区| 精品视频1区2区| 美国十次了思思久久精品导航| 中文字幕中文字幕中文字幕亚洲无线| 亚洲人xxxx| 99精品视频一区二区| 色综合久久中文综合久久97| 极品少妇xxxx精品少妇| 国产偷国产偷亚洲高清人白洁| 日韩欧美成人一区| 91精品办公室少妇高潮对白| 日本在线不卡视频| 亚洲成人三级小说| 国产精品456露脸| 日韩电影在线一区| 国产欧美一区二区精品性色超碰| 国产麻豆精品久久一二三| 99麻豆久久久国产精品免费优播| 一区二区三区在线视频观看58| 99久久婷婷国产综合精品| 粉嫩aⅴ一区二区三区四区| 亚洲国产一区二区视频| 欧美中文字幕亚洲一区二区va在线| 欧美美女黄视频| 欧美激情中文字幕| 中文字幕精品—区二区四季| 欧美色图第一页| 亚洲精品视频在线观看免费| 欧美系列在线观看| 亚洲欧美电影一区二区| 色婷婷久久久综合中文字幕| 韩日欧美一区二区三区| 麻豆91在线看| 91精品国产色综合久久ai换脸| 欧美伊人久久久久久久久影院| 亚洲精品一二三四区| 欧美日韩成人在线| 91精选在线观看| 欧美经典一区二区| gogo大胆日本视频一区| 在线视频欧美精品| 国产精品嫩草影院av蜜臀| 日韩专区中文字幕一区二区| 老司机免费视频一区二区| 色婷婷香蕉在线一区二区| 日本电影欧美片| 国产在线不卡一区| 五月天丁香久久| 中文字幕免费在线观看视频一区| 日韩avvvv在线播放|